Senin, 17 September 2018

Immersion of Metals and Alloys

It is the differential electrical potential between the anode (+) and the cathode (-) which is key to the moist corrosion example described above. This differential is primarily generated by the difference in oxygen availability between the edge and the centre of the water droplet.
Differential potentials can also be generated by the presence (and contact) of dissimilar metals immersed in an oxygenated electrolyte solution (Illston et al., 1979; Bryson, 1987). Corrosion induced by such a coupling can be extremely aggressive and can result from the designed use of dissimilar metals (steel cables with aluminum plates or anchors) or from the presence of cablebolts in a rich sulphide ore. Indeed, rock bolts in sulphide ore bodies have significantly reduced service lives (Hoey and Dingley, 1971; Gunasekera, 1992).

Corrosion cells can also be generated on cablebolt surfaces at the point where abrupt transitions in environment occur. These include differential grout coverage, for example, at the borehole collar, at penetrating cracks in the grout, where the cable crosses a local water table, or within voids in the grout column. Oxygen (atmospheric or dissolved) is the critical component of the cathodic reaction discussed so far.
The concentration of oxygen is therefore a critical factor governing the rate of corrosion. In aqueous environments with high levels of acidity or low pH, however, the hydrogen (H ) ions in the acid solution react +cathodically with the free electrons in the steel to form hydrogen gas (H ). This 2 reaction is countered as before by the release of iron ions from the steel and does not require the presence of oxygen. While oxygen concentration normally controls corrosion rate (loss of iron ions), the acid (H ) reaction dominates below a pH of +4 and can become extremely aggressive.
Although it is not as common as oxygen related corrosion, acid corrosion can pose a serious hazard to mine support (Gunasekera, 1992) due to its accelerated rate. Sampling of groundwater and/or mine water for pH is relatively simple so the risk can be easily determined. In Canada, mine water with a pH of 2.8 has been recorded in underground mines, and measurements of 3-4 are not uncommon (Minick and Olson, 1987). Acidic mine water can often be linked to the oxidation of sulphide ores (primarily pyrite and marcasite) resulting in the generation of sulphuric acid and pH levels as low as 1.5-2 (Gunasekera, 1992).
In addition, there are many species of bacteria which flourish in the underground environment and which greatly accelerate the breakdown of sulphides to form sulphuric acid. Different species are active with and without the presence of oxygen. Such bacteria can accelerate the production of acid in mine waters by a factor of four with a related increase in corrosion rate.

Accelerated Corrosion

Of primary consideration in cablebolting is the acceleration of any of these corrosion processes at points of excessive strain in the cablebolt. As steel is strained in tension or in shear across a joint in the rock by rockmass movement, or bent by improper plate installation, the susceptibility to all forms of corrosion increases. Any protective surface rust is cracked by such strain exposing fresh surfaces. Microscopic cracks formed in areas of high strain create corrosion conduits beyond the steel surface. In addition, the strained ionic bonding in the metal increases the potential for iron-electrolyte interaction and hydrogen embrittlement (Littlejohn and Bruce, 1975).
This so-called stress corrosion cracking is important because cables will tend to corrode much more rapidly in aggressive environments exactly when and where their mechanical integrity is most tested and is most critical. In the case of grouted cablebolts, load concentrations along the cable length are usually related to full cracking and separation across the grout column. This allows direct and focussed attack on the stressed steel by corrosive agents. Stress corrosion is often the final mechanism in cablebolt failure in corrosive environments.

Cablebolt Geometry Effects

In general, the high carbon steels used in the manufacture of cablebolt strand are more corrosion resistant than the steels used in conventional rock bolts. Nevertheless, certain features of the grouted cablebolt which increase its potential for detrimental corrosion include the presence of flutes (v-grooves), internal channels between the outer wires and the king wires, as well as the formation of concentrated corrosion sites at separation planes in the rock and grout. Voids and bubbles in the grout column also create potential corrosion cells.

Summary Recommendations for Corrosive Environments

Corrosion is rarely a problem in open stope cable support, simply due to the short service life involved. Cut and fill stopes can be open for up to a year or more and overhead cables should, therefore, not be allowed to corrode to unacceptable levels during this time. Fractured, sulphide ore bodies require special attention in this regard. Corrosion of cablebolts (and other steel support) in permanent mine openings can cause serious problems in terms of safety and rehabilitation. In addition to normal capacity reduction, corroded cables tend to become brittle and can suffer reduced effectiveness in dynamic loading situations. The factors which contribute to corrosion are often complex, are compounded in an underground environment, and are very difficult to combat in areas of high severity. Nevertheless, the following is a brief list of remedial measures for use when corrosion has been identified as a problem (Littlejohn, 1990; Gunasekera, 1992).

Cablebolt storage

- Store cablebolts in a dry location, preferably moving them underground to the working site only when required. Long-term storage outside, under the sun or exposed to the elements should also be avoided.
- Do not allow water to collect on the cablebolts. Corrosion will quickly fill the flutes reducing bond strength and potentially pitting the steel.

Installed cablebolts

- High humidity accelerates corrosion. Good ventilation at all times can help to reduce this factor.
- Use caution when installing cables in areas with flowing water.
- Avoid any use of cements, mixing water or admixtures containing chlorides, sulphides or sulphites.
- Grout voids and bubbles increase corrosion potential.
- Request that plates, barrels and wedges, and other fixtures are electro-chemically compatible with the high strength carbon steel used in strand.
- Long rust stalactites growing rapidly from the ends of uphole cables indicates potentially severe strand corrosion up the hole.
- Sulphate resistant grouts are alkaline and can counteract acidic mine waters. The use of this cement does not permit the use of such waters for grout mixing.

Severe corrosion

- Epoxy-encapsulated cables are available for use in corrosive environments (Windsor, 1992). Note that such coatings may not be resistant to all forms of corrosion and that the coating must penetrate the strand, encapsulating the king-wire to prevent focussed corrosion down the centre of the strand.
- Galvanized cable would be of use against non-acidic corrosion.
- Grease can protect ungrouted lengths of cable (at the collar, for example).
Other more costly measures such as cathodic protection are discussed in Littlejohn and Bruce (1975) and Littlejohn (1990; 1993).

Corrosion of Steel Strand

Corrosion of high carbon steel strand can be a serious problem in long term civil engineering applications. In mining, however, the incidences of cablebolt corrosion causing serious problems are rare. This is due primarily to the short time frame involved in open stope support in underground mining.
Corrosion problems observed by the authors in mining environments were typically in long term support in open pits where the groundwater was acidic or saline and in long term support in underground sulphide deposits. Cut and fill applications in wet conditions where fractured stope backs could remain (supported) for up to a year were notably susceptible to corrosion. Serious failure, due to corrosion and rupture of the strand, can occur in such applications.

The nature of corrosion is extremely complex and a fundamental discussion is beyond the scope of this book. It is the intent here to discuss some of the important factors involved in corrosion so that the engineer may assess the potential for problematic corrosion and take steps to prevent it or make the appropriate design allowances for it.
Most common refined metals are inherently unstable ionic materials composed of arrays of single atoms which possess a full compliment of electrons. Metals such as iron normally tend to give up electrons at room temperature (gold is a notable exception) and become involved in reactions leading to the formation of more stable compounds such as iron oxide or iron hydroxide (rust). The release of electrons is termed an anodic reaction and the acceptance of electrons a cathodic reaction. Both reactions must occur for corrosion to take place. Since metals such as the iron found in steel cable are normally willing to give up their electrons, it is normally the presence of a cathode which determines the corrosion potential.
The cathodic reaction (involving the consumption of electrons released anodically from the iron) can be made possible by the presence of an acid, sulphate, water and/or oxygen.
Corrosion of steel (iron) can be divided into four basic categories (Illston et al., 1979; Pohlman, 1987):
- Dry corrosion
- Wet corrosion
- Corrosion of immersed metals and alloys Induced or accelerated corrosion (includes influence of stress)
The following discussion is confined to corrosion of cablebolts and as such is incomplete as a comprehensive examination of general corrosion.

Dry Corrosion

Dry corrosion is an inevitable consequence of medium- to long-term storage of cablebolts in even the most ideal conditions. It involves the formation of iron oxide (Fe0) as iron atoms combine with atmospheric oxygen. Once the process initiates on a clean surface, it spreads fairly rapidly to involve most of the exposed surface. While Fe0 forms an adherent film on steel surfaces and can actually form an impervious layer, it can be vulnerable to cracking and as such fresh iron is constantly being exposed and the process continues. In the perspective of cablebolting in mining, however, dry oxidation is a relatively slow chemical process and is of only minor consequence. Light surface (dry) corrosion has been shown (Goris, 1990) to improve bond performance of cablebolts by up to 20% in ideal conditions, although deliberate rusting of cablebolts is not advocated by the authors. The process is accelerated by higher surface temperatures (e.g. if the cables are exposed daily, over long periods, to direct and intense sunlight).
Heavy surface rust on newly shipped cables is usually the result of exposure to moisture and subsequent atmospheric corrosion which can be very detrimental to the performance of the cablebolts.

Wet or Atmospheric Corrosion

In a wet or humid environment, the corrosion process is accelerated and can involve a wider variety of cathodic reactions. Water and oxygen become jointly involved in the cathodic reaction and result in other compounds such as 2Fe(OH) ,3Fe O (magnetite), or Fe O (hema 3 4 2 3 tite). These compounds are much less adhesive then FeO and less likely to form a self-arresting film.
Corrosion products formed on cablebolts by wet corrosion are more likely to have a greasy feel as compared to the dry, rough texture of FeO film and are more likely to be associated with other film substances such as oils and additional moisture. These products are likely to have a detrimental effect on bond capacity of cablebolts. Clearly, unchecked corrosion reduces the cross-sectional area of steel in the cable and ultimately reduces the tensile capacity of the steel to unacceptable levels. Ductility and displacement capacity is also reduced (embrittlement).
The presence of water on the surface of the cablebolt also increases the potential for galvanic corrosion. The same wet corrosion cathodic reactions occur, accelerated by the presence of an electrolyte such as chloride, sulphate or hydroxide. Without electrolytes in a static solution, the corrosion process is self-limiting. Iron ions (e.g. Fe ) move into solution adjacent to the steel surface 2+ leaving behind free electrons (2e ) in the steel solid. The concentration of iron ions -in solution and free electrons in the steel creates an electrical potential difference which resists further dissolution of iron ions.
The effects of electrolytes in the surface water is best illustrated in the above example. A drop of water on the surface of the steel contains a dissolved electrolyte such as sodium chloride (which forms a solution of free sodium, Na ,+ and chloride, Cl , ions). The presence of electrolytes permits the transport of iron - ions as FeCl away from the corrosion (anode) site at the centre of the drop. At the same time, water and oxygen combine at the perimeter of the drop with the free electrons from the steel to form hydroxide ions (OH ) balanced by Na in solution. - + These move in the opposite direction to the FeCl generating a current (electron flow) in the steel supplying electrons to the drop perimeter as more iron ions go into the solution at the drop centre. Between the active centre (anode) and the drop perimeter (cathode) the iron ions combine with the hydroxide to form ferrous hydroxide.
This in turn becomes a relatively stable and complex hydrated oxide known as rust. The sodium and chloride transport ions are freed to carry on the process. The cyclic nature of the process combined with the fact that the corrosion product (rust) is not deposited at the anode (as it is with dry corrosion) means that this form of galvanic corrosion is not self-limiting and can be very aggressive. This is particularly true in mining environments given the high concentration of chloride and sulphate ions in mine waters (Minick and Olson, 1987).
Moist corrosion is particularly enhanced by crevices such as those formed by the flutes of a cable. Crevices are particularly good at retaining moisture and the conditions are perfect for differential aeration with low oxygen supply at the tip of the crevice compared with the rest of the cable. If a weak electrolyte is present, an aggressive corrosion cell is thus generated. This corrosion is particularly detrimental as the corrosion product (rust) readily fills the flutes of the cable preventing the penetration of grout and seriously reducing the cable/grout interlock essential for cable bond strength.

Jumat, 03 Agustus 2018

Selasa, 29 Agustus 2017

6 Cara Menghilangkan Jerawat Membandel Secara Alami dan Efektif


Cara menghilangkan jerawat membandel secara alami dan efektif merupakan rangkaian cara mengatasi jerawat yang kami tulis spesial dalam blog ini.

Sebelumnya pernah diulas lengkap mulai jenis-jenis jerawat, penyebab jerawat, menghilangkan jerawat alami, menghilangkan jerawat batu hingga menghilangkan bekas jerawat seperti noda hitam atau bopeng akibat jerawat dan lain sebagainya yang berhubungan dengan masalah seputar masalah utama remaja ini.

Ya benar jerawat merupakan masalah umum yang harus dihadapi sebagian besar orang terutama remaja.

 Jerawat memiliki banyak sekali jenis dan cara penangannya, setiap jenis jerawat harus ditangani secara berbeda jika tidak maka akan semakin parah.

Ada banyak tantangan bagi penderita jerawat seperti tidak boleh memencet dengan kuku dan lain sebagainya yang harus dipatuhi jika tidak ingin jerawat sembuh meninggalkan bekas seperti flek hitam atau bahkan bopeng bekas jerawat.

Memang ada banyak cara dan solusi yang bisa dilakukan untuk mengatasi jerawat yang muncul pada wajah ataupun punggung.

Diantaranya seperti membeli beragam obat diapotik, menggunakan bahan-bahan alami dan pergi kedokter atau klinik yang memang berpengalaman dibidangnya.

Menggunakan obat yang mengandung bahan kimia tidak kami sarankan karena memiliki resiko yang sangat tinggi akan lebih baik jika langsung melakukan konsultasi pada dokter sehingga akan lebih cepat sembuh.

Cara lain yang cukup efektif, murah dan tak beresiko adalah menggunakan bahan-bahan alami atau bahan tradisional yang sejak dulu menjadi andalan nenek moyang kita.



Cara menghilangkan jerawat membandel image


Cara Mengatasi Jerawat Membandel Secara Alami, Cepat dan Efektif


Minggu, 30 April 2017

Mengejutkan, Inilah 4 Hp Xiaomi yang berkerja sama dengan Sony

Hai guys, Hari ini Z akan Share tentang Smartphone Buatan Xiaomi yang menggunakan Kamera Sony. Sony dan Xiaomi ternyata selama ini berkaloborasi terhadap Kamera smartphonenya karna Kamera Sony adalah Kamera Smartphone yang sangat memiliki khualitas yang tinggi. mau tau tipe apa saja? Nih
4 Smartphone Xiaomi yang menggunakan kamera Sony

1. Xiaomi Mi 4c RAM 2GB ROM 16GB



Kamera utama di hape Xiaomi Mi 4c ini sudah memakai sensor 
kamera Sony IMX258 yang dibekali lensa beresolusi 13 megapiksel
yang sudah dilengkapi dengan LED Flash dual tone. Yang membuat kalian

3.Xiaomi Mi Note/Pro

3.Xiaomi Mi Note/Pro



Xiaomi Mi Note dan Mi Note Pro menggunakan sensor kamera Sony yang sama dengan Xiaomi Mi 4i yaitu Sony IMX214 yang berukuran 3.8mm (28mm eff). Kamera di hape Xiaomi ini memiliki ketajaman resolusi 13 megapiksel yang telah dilengkapi dengan aperture f/2.0, Optic Image Stabilization (OIS),
Auto Focus dan Xenon dual-tone Flash.

4. Xiaomi Mi Note 2